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Metastability of dark snoidal-type waves in quadratic nonlinear media
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We report the existence and basic properties of dark snoidal-type waves self-sustained in quadratic nonlinear
media. Using a stability analysis technique, we reveal that they are almost completely stable, or metastable, in
suitable ranges of input energy flows and material parameters. This opens the way to the experimental obser-
vation of dark-type multicolor periodic wave patterns supported by quadratic nonlinearities.
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The possibility of generation of multicolor dark-type so
ton light patterns in quadratic nonlinear media has been
plored since the early days of the field. A number of da
type soliton solutions, including multihole, mixed dar
bright, and embedded solutions, are known to exist~see
Refs. @1–7#; for reviews, see@8,9#!. Most of such solutions
have been shown to be highly unstable under evolution,
to the development of both dynamical and modulational
stabilities. However, the study of the existence and stab
of all possible dark-type solutions is far from complete, a
the potential elucidation of stable, or at least metastable, g
eral multicolor dark-type states is an important question t
remains open. In this regard, some dark-type solutions co
have oscillating tails and hence bound states of a few d
solitons could be formed due to mutual trapping in positio
corresponding to the local minima of the effective interact
potential. Such bound states of several dark solitons coul
considered as ‘‘dark soliton molecules.’’ A fascinating impl
mentation of this concept is the realization of stable, or me
stable, periodic dark-type soliton arrays, and some eff
have been made to find analytical expressions for spe
bright and dark soliton arrays in quadratic media with the
of direct substitution@10#, Hamiltonian formalisms@11#, and
Lie-group theoretical methods@12#. However, the construc
tion of complete families of periodic solutions in quadra
media usually requires numerical methods. We recently
ported the existence and fundamental properties of s
whole families of stationary cnoidal-type and dnoidal-ty
bright soliton arrays in quadratic nonlinear media. Our n
merical simulations revealed that the bright cnoidal wa
arrays with high contrasts seem to be robust enough to
observed experimentally@13#. Actually, a rigorous linear sta
bility analysis predicted that completely stable brig
cnoidal-wave arrays do exist above a certain threshold
ergy level@14#, thus yielding an example of stable period
wave patterns in uniform media supporting bright solit
solutions. This provides a renewed motivation to explore
possibility of finding self-sustained stabilized dark-ty
patterns.

The aim of this paper is to present the properties of d
sn-type periodic waves inx (2) media and to report the out
come of a comprehensive stability analysis based on a p
erful technique developed to elucidate the stability of gene
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periodic nonlinear waves. We show that quadratic nonline
ties admit the existence of continuous families of dark pe
odic waves with different functional shapes and contrast,
discuss their basic properties. The central result reporte
that the linear stability analysis demonstrates that, under
propriate conditions, such wavesdo not exhibit exponentially
growing instabilities. Instead, we found that they exhib
only weak small-scale oscillatory instabilities. The weakne
of the instabilities is verified by direct numerical simulatio
of the full dynamical wave evolution. Therefore, we foun
by numerical simulations that such snoidal-type waves
robust enough to be observed experimentally.

For concreteness, we consider the case of pulsed l
propagation in a quadratic nonlinear crystal under conditi
of second-harmonic generation, where a fundamental
quency ~FF! wave and its second harmonic~SH! interact
with each other. The propagation of the correspond
slowly varying envelopes under conditions for noncritic
type I phase-matching is described by the system of coup
reduced equations

i
]q1

]j
5

d1

2

]2q1

]h2 2q1* q2 exp~2 ibj!,

~1!

i
]q2

]j
5

d2

2

]2q2

]h2 2q1
2 exp~ ibj!.

Here q15Ldis1(Lnl1Lnl2/2)21/2A1I 0
21/2 and q2

5(Ldis1/Lnl1)A2I 0
21/2 are dimensionless complex amplitud

of the fundamental (v5v0) and second harmonic (v
52v0) waves,A1,2(h,j) are the slowly varying amplitudes
h5(t2z/ugr1)/t0 is the normalized running time;ugr1
5(]k/]v)v5v0

21 is the group velocity of the fundamenta

wave,t0 is the characteristic pulse duration;j5z/Ldis1 is the
normalized propagation distance;Ldis1,25t0

2/u]2k1,2/]v2u
are dispersion lengths;k15k(v0) and k25k(2v0) are the
wave numbers; Lnl15c2k1/4pv0

2I 0
1/2x (2)(v0) and Lnl2

5c2k2/4pv0
2I 0

1/2x (2)(2v0) are nonlinear lengths; d1

5sgn(]2k1 /]v2) and d25sgn(]2k2 /]v2)Ldis1/Ldis2 are the
group-velocity dispersion coefficients; b5sgn(2k1
2k2)Ldis1/Lcoh is the phase mismatch;Lcoh51/u2k12k2u is
the coherence length. We neglect the group-velocity wa
off and assume propagation in near-phase-matc
configurations.
©2003 The American Physical Society09-1
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The stationary solutions of Eqs.~1! have the form
q1,2(j,h)5w1,2(h)exp(ib1,2j), wherew1,2(h) are real func-
tions andb1,2 are real propagation constants that satisfyb2
5b12b1 . The resulting system of equations forw1,2(h)
takes the well-known form

d1

2

d2w1

dh2 1b1w12w1w250,

~2!
d2

2

d2w2

dh2 1~b12b1!w22w1
250,

which, in contrast to the case of fully localized soliton so
tions, in the case of sn waves must be solved together
periodic boundary conditions.

It is well known that Eqs.~2! take a simpler form in the
large phase-mismatch limit, whenubu@1 and the field am-
plitudes are such that there is a negligible conversion
tween the fundamental wave and second harmonic. Using
substitutionw2(h)5w1

2(h)/(b12b1) for the SH field, one
arrives at the approximate equation with cubic nonlinear

d2w1

dh2 1
2b1

d1
w12

2

d1~b12b1!
w1

350. ~3!

Equation ~3! has a specific periodic solution in the for
of a so-called snoidal wave w1(h)5m@d1(2b1
1b)#1/2sn(h,m), where m5(2b1 /d121)1/2 is the Jacobi
parameter. This solution is valid for the following range
parameters: d1>b1>d1/2 and 2b11b.0, provided that
d1.0 andb.22d1 . The periodT of the snoidal~or sn!
wave amounts to 4K(m), whereK(m) is the elliptic integral
of the first kind which grows rapidly asm→1. In the limit of
strong localization (m→1) the snoidal wave transforms int
an array of out-of-phase dark solitons, while for weak loc
ization (m→0) the sn wave transforms into a small amp
tude sinusoidal wave.

From now on, we will assume material and pump lig
conditions such that the FF lies in the normal dispers
region, while the SH frequency lies in the anomalous disp
sion region. For simplicity we set equal dispersion leng
for both frequencies and setd151, d2521.

The whole families of periodic solutions of Eqs.~2! could
be obtained only numerically, for example, using a relaxat
method. The explicit analytical solution in the form of
snoidal wave serves as a good initial guess for the itera
procedure. Despite the fact that the exact solutions of E
~2! at finite phase mismatchesb are not described by Jacob
elliptic functions of sn type, by analogy, we will call them
snoidal waves. The snoidal wave families of Eqs.~2! are
defined by two parameters, namely, the transverse perioT
and the propagation constantb1 , for a fixed value of the
phase mismatchb. Physicallyb1 is related to the energy flow
U5*2T/2

T/2 (w1
21w2

2)dh inside each transverse wave perio
Since one can use scaling transformations to obtain sno
waves with different periods from a given family, we sele
the time scalet0 in such a way that the periodT equals 2p,
and vary the propagation constant.
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The basic properties of the sn-type waves are summar
in Fig. 1. The dispersion curvesU(b1) are shown in Fig. 1~a!
for different phase mismatchesb. There are cutoff values fo
the propagation constant at different phase mismatc
Thus, for21<b,` one hasb1>1/2 and both FF and SH
waves disappear asb1→1/2, while for b,21, propagation
constantb1>2b/2, andw1→0, w2→2(11b)/2 at the cut-
off point. Among the important characteristics of the da
periodic waves is the contrast

C1,25
uw1,2umax2uw1,2umin

uw1,2umax1uw1,2umin
, ~4!

which is directly related to the amplitude of the consta
background, and hence to the potential stability or instabi
of dark waves. The closer the contrast to 1, the smaller is
amplitude of the constant background. Notice that the
wave does not contain constant background and thusC1
[1 always; thus in Fig. 1~b! we show only the contrast fo
the SH wave. Atb.0 the contrastC2 varies only slightly,
whereas forb,0 it rapidly grows near the cutoff point an
saturates to a constant limit with increase of the propaga
constant~or energy flow!. Notice that the higher the phas
mismatch, the higher the contrast. Figure 1~c! shows the in-
tegral width

W52S E
2T/4

T/4

~w1
21w2

2!h2dh D 1/2S E
2T/4

T/4

~w1
21w2

2!dh D 21/2

~5!

FIG. 1. ~a! Dispersion curves for various phase mismatch
Wave contrast~b!, integral width~c!, and energy sharing~d! versus
propagation constant for various phase mismatches.~e! and ~f!
show snoidal wave profiles with different energy flows atb50.
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METASTABILITY OF DARK SNOIDAL-TYPE WAVES IN . . . PHYSICAL REVIEW E68, 046609 ~2003!
versus propagation constant. The slow growth of the inte
width with the increase of the energy flow is an indicati
that dark intensity holes become narrower for high-ene
snoidal waves. Notice that the integral width is almost ind
pendent of the value of the phase mismatch at high ene
flows. The energy sharing per period,

S1,25
1

U E
2T/2

T/2

w1,2
2 dh, ~6!

between the FF and the SH waves is shown in Fig. 1~d! as a
function ofb1 for one particular case, at negative phase m
match. At low energy levels and negative phase mismatc
the main part of the energy is concentrated in the SH wa
whereas at high energiesS1 is higher thanS2 . In the case of
positive mismatch the FF wave always contains most of
total energy. All this is similar to the general features
quadratic solitons of different types. Typical profiles of t
dark periodic waves are displayed in Figs. 1~e! and 1~f! for
the low- and high-energy cases, respectively. Notice
snoidal-type waves constitute the periodic analogs of
bound states of a few dark solitons studied in Ref.@4#. In
other words, a twin-atom or multiatom ‘‘soliton molecule
transforms into a one-dimensional ‘‘dark soliton crystal.’’

The central issue behind the existence of families of da
type sn waves is whether the binding energy of such ‘‘soli
crystals’’ is big enough to render them stable under propa
-

x

tri
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tion in the presence of random input perturbations. To
dress this issue we performed a rigorous linear stab
analysis using a method specially suited to these type
solutions. The method of stability analysis for periodic wa
patterns used here was introduced in Refs.@14,15# for the
case of bothx (2) and x (3) nonlinear media; thus here onl
the essential points necessary for discussion are recalled
seek for perturbed solutions of Eqs.~1! in the form

q1,2~h,j!5@w1,2~h!1U1,2~h,j!1 iV1,2~h,j!#exp~ ib1,2j!,
~7!

whereU1,2 and V1,2 are the real and imaginary parts of th
small perturbation, respectively. Such perturbations are
resented in the spectral-type integral form:

U1,2~h,j!5ReF E C~d!u1,2~h,d!exp~dj!dd G ,
~8!

V1,2~h,j!5ReF E C~d!v1,2~h,d!exp~dj!dd G ,
where C(d) is the complex spectral amplitude andd is
the complex growth rate of the perturbation. Substitution
expression~7! into Eqs. ~1! and linearization yields the
system of ordinary differential equations for the perturbat
vector F(h)5$u1 , u2 , v1 , v2 , du1 /dh, du2 /dh, dv1 /dh,
dv2 /dh%T and can be written in the matrix form:
dF

dh
5BF, B5S O E

N OD ,

~9!

N5S 22~b12w2!/d1 2w1 /d1 22d/d1 0

4w1 /d2 22b2 /d2 0 22d/d2

2d/d1 0 22~b11w2!/d1 2w1 /d1

0 2d/d2 4w1 /d2 22b2 /d2

D ,
he

ing

e
ne

s
nt
r
cal-
where O and E are zero and unity 434 matrices, respec
tively.

The general solution of Eqs.~9! is expressed in the matri
form F(h)5I(h,h8)F(h8). Here the Cauchy matrix
I(h,h8) satisfies the initial value problem]I(h,h8)/]h
5B(h)I(h,h8), I(h8,h8)5E. The translation matrix of the
perturbation eigenvectorF on one wave periodT is ex-
pressed in terms of the Cauchy matrixP(h)5I(h1T,h).
The perturbation eigenvectorFk(h) is finite along theh axis
if the corresponding eigenvalue of the translation ma
ulku51 (k51,...,8). The eigenvalueslk are given by the
roots of the characteristic polynomial

det~P2lE!5 (
k50

8

pkl
82k50 ~10!

of the translation matrix, which is independent ofh. The
x

coefficients of the polynomial can be written in terms of t
tracesTk5Tr@P k(h)#, which are also independent ofh. One
finds that p051, p152T1 , p25(T1

22T2)/2, p352T1
3/6

1T1T2/22T3/3, p45T1
4/242T1

2T2/41T1T3/31T1
2/82T4/4,

p55p3 , p65p2 , p75p1 , p85p0. Notice that four of the
eight eigenvalueslk can be excluded, since it follows from
the structure of the characteristic polynomial thatlk
51/lk14 (k51,...,4). One can show that the correspond
eigenvectors satisfy the symmetry relationsFk(h)5Fk14
(2h) (k51,...,4).

To elucidate the outcome of the stability analysis, w
thoroughly scanned the complex increment half pla
Re(d)>0 and analyzed the eigenvalueslk , looking forareas
of existence of ‘‘allowed’’ perturbations~inside these area
one hasulku51) for fixed values of the propagation consta
b1 and phase-mismatch parameterb. Then we searched fo
the maximal growth rates inside these areas and finally
9-3
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KARTASHOV et al. PHYSICAL REVIEW E 68, 046609 ~2003!
culated the corresponding perturbation modes. We empha
that this requires an intense numerical effort.

There are two different types of instability of the da
periodic waves: ‘‘exponential’’ instabilities associated wi
purely real growth rates and ‘‘oscillatory’’ instabilities ass
ciated with complex growth rates. Atb<21 snoidal-type
waves were found to be exponentially unstable in the wh
domain of their existence, whereas forb>21 exponential
instabilities were found inside a certain relatively narro
band of propagation constants@see Fig. 2~a!#. The areas of
existence of finite perturbations at negative and posi
phase mismatches are shown in Figs. 2~b! and 2~c!, respec-
tively. Notice that atb<21 the instability growth rates ar
quite high and thus will lead to a fast decay of the cor
sponding wave in the whole range of its existence. The
portant result revealed in this paper is that atb>21 the
situation drastically changes: While exponential instabilit
are still possible in a narrow band of propagation consta
@Fig. 2~c!#, the maximal value of the corresponding grow
rate inside these bands is very small compared with typ
growth rates encountered whenb<21. Moreover, when the
mismatchb increases, the maximum value of the growth ra
inside the instability band quickly decreases. This is con
tent with the suppression of exponential instabilities of sn
dal waves in the large~and positive! phase-mismatch limit,
i.e., an effective Kerr medium.

FIG. 2. ~a! Area of existence of exponential instabilities for da
snoidal waves~shaded!. Areas of existence of finite perturbation
with real growth rates atb523 ~b! and 0, 3, 10~c!. ~d! Maximum
real part of complex growth rates versus energy flow for differ
phase mismatches.~e! One of the components of the perturbatio
corresponding to growth rated50.09791293.3921i and snoidal
wave withb157 atb53. ~f! Propagation of the snoidal wave in th
presence of the perturbation depicted in~e!. Only the FF wave is
shown.
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Therefore, on physical grounds the important implicati
is that near phase matching, which is the most interes
case experimentally, such a small growth rate of the ex
nential instabilities can manifest itself only after a lon
propagation distance, typically far larger than any feasi
quadratic crystal length. Actually, the exact numerical sim
lations, discussed below, of the evolution of the perturb
stationary solutions for large propagation distances, bey
the regime where the predictions of linear stability hold,
veal that the growth of the perturbations does not even
ways lead to the eventual decay of the sn waves.

‘‘Oscillatory’’ instabilities were found to exist for all en-
ergy levels and material parameters. At negative phase
matches the oscillatory instability is strong and the real pa
of the complex growth rates reach almost the same ma
tude as those associated with exponential instabilities. H
ever, at positive and zero phase mismatches the maxim
positive value of the complex growth rates, Re(d)max, asso-
ciated with oscillatory instabilities was found to be qui
small and to grow monotonically with the energy flowU.
Notice that the band of energy flows where Re(d)max<0.05
rapidly increases from 0<U&62.2 atb53 to 0<U&314 at
b510. Since the decay length of waves with such low
crements is huge and exceeds feasible crystal lengths by
eral orders of magnitude, the important conclusion is tha
should be possible to observe snoidal-type waves experim
tally. Notice also that inside these intervals of ‘‘metastab
ity’’ the contrast, energy sharing, integral width, and oth
characteristics of dark snoidal-type waves change consi
ably. In the limitb→` the ‘‘metastability’’ region broadens
and both oscillatory and exponential instabilities are s
pressed. The last result is consistent with the stability of d
snoidal waves in the corresponding Kerr medium. T
imaginary part of the complex growth rates rapidly increa
as U→`. We have found that dominant frequencies in t
spectrum of perturbation with highest Re(d) can be estimated
asV'6@2 Im(d)#1/2 and at moderate and high energy flow
are much higher than the frequencies of their own harmon
of snoidal waves. This means that in the case of w
localized high-energy waves the most ‘‘harmful’’ high
frequency perturbations lie far from the frequency band
snoidal waves and could potentially be removed by spec
filtering. For example, for a wave withb157 at b53 the
snoidal wave’s own frequency band is given by28&V
&8, while the dominant frequencies in the perturbation sp
trum areV'624 @see Fig. 2~e! which shows the profile of
the perturbation for this wave#. A typical scenario of the
instability development for the snoidal-type waves is sho
in Fig. 2~f!. One can clearly see the appearance of hi
frequency modulations of the otherwise smooth profile; ho
ever, the depth of this modulation is small and does not l
to complete decay of the wave.

To confirm the results of the linear stability analysis a
to elucidate the influence of an envelope on the snoidal w
propagation, we performed a set of simulations of Eqs.~1!
with the input conditions q1,2(h,0)5w1,2(h)G(h)@1
1r1,2(h)#, wherer1,2(h) is a multiplicative Gaussian nois
with variances1,2

2 , andG(h) is a wide envelope modulating
the infinite periodic snoidal-type pattern. Notice that one

t
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METASTABILITY OF DARK SNOIDAL-TYPE WAVES IN . . . PHYSICAL REVIEW E68, 046609 ~2003!
the obvious consequences of the superimposed wide e
lope is slow broadening of the discrete spectral lines~modes!
forming a periodic wave pattern. We have found that in so
cases~when the growth rates predicted by linear stabil
analysis are small enough! perturbed snoidal waves with low
and moderate energy flows can survive up to 1000 propa
tion units, exceeding any feasible crystal length by seve
orders of magnitude~Fig. 3!. The band of energy flows cor
responding to such ‘‘metastable’’ propagation quickly i
creases with increase of the phase mismatch, as predicte
the stability analysis. As in the case of regular perturbati
in linear stability analysis, in the case of random pertur
tions instability of high-energy waves manifests itself in t
appearance of high-frequency oscillations and leads to
havior analogous to that depicted in Fig. 2~f!.

In conclusion, we have numerically found period
snoidal-type solutions describing phase-locked wave patt
in quadratic nonlinear media and presented their basic p
erties. The rigorous linear stability analysis of the solutio
has shown the existence of parameter areas where t
waves exhibit very weak instabilities; thus we termed th
metastable. In such areas the growth rate of perturbation
small enough to allow structural stability of the perturb
waves during hundreds of propagation units. Such pattern
periodic pixel-like structures can find applications, e.g.,
the study of complex light patterns generated by modu
tional instabilities, or in the implementation of digital imag
processing schemes based on solitonlike arrays@16,17#, and
in the formation of two-dimensional discrete solitons in m
B

.

p

um

,

04660
e-

e

a-
al

by
s
-

e-

ns
p-
s
se

is

of

-

ticolor photonic lattices~see@18# for a photorefractive coun-
terpart!.
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FIG. 3. ~a! shows the profile of the stationary dark snoidal wa
with b151 at b53 and its long-term propagation in the presen
of white input noise superimposed on the stationary solution.~b!
The same as in~a! but for the wave withb151.6 andb510. Noise
variances1,2

2 50.01. Only the FF wave is shown.
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